Studies
Generation of calibration study results
- class pysimmmulator.study.batch_study(channel_rois: dict, channel_distributions: dict[str, dict] = {}, random_seed: int = None, bias: float = 0.0, stdev: float = 0.05)
Object for generating study values across all channels
- generate(count: int = 1) dict[str, array]
Produces study results for all of the registered channels
- Parameters:
count (int) – number of study results to return (default is 1)
- Retuns:
study_results (dict[iterable[float]]): an array of study results
- generate_dynamic(universal_bias: List[float] | None = None, universal_stdev: List[float] | None = None, channel_bias: dict[str, list[float]] | None = None, channel_stdev: dict[str, list[float]] | None = None) dict[str, list[float]]
Produces study results for all of the registered channels
- Parameters:
universal_bias (List[float]) – iterable of bias values used to update the distribution per results
universal_stdev (List[float]) – iterable of stdev values used to update the distribution per results
channel_bias (dict[str, list[float]]) – lookup of iterable of bias values used to update the distribution per results
channel_stdev (dict[str, list[float]]) – iterable of stdev values used to update the distribution per results
- Returns:
an array of study results
- Return type:
study_results (iterable[float])
- class pysimmmulator.study.study(channel_name: str, true_roi: float, random_seed: int = None, bias: float = 0.0, stdev: float = 0.05)
Object for generating study values from a normal distribution around true the true channel roi
- generate(count: int = 1) array
Provides a study ‘result’
- Parameters:
count (int) – number of study results to return (default is 1)
- Retuns:
study_results (iterable[float]): an array of study results
- generate_dynamic(bias: list[float], stdev: list[float]) list
Provides study results with non-stationary distribution
- Parameters:
bias (list[float]) – iterable of bias values used to update the distribution per results
stdev (list[float]) – iterable of stdev values used to update the distribution per results
- Returns:
an array of study results
- Return type:
study_results (iterable[float])
- property roi: float
Reports the true ROI of the channel set at initializaiton
- Returns:
the true ROI value for the channel.
- Return type:
true_roi (float)
- update_bias(value: float) None
Updates the distribution bias to the passed value
- Parameters:
value (float) – value to set the distribution bias to
- Returns:
None
- update_roi(value: float) None
Updates the roi assigned to the channel as the passed value
- Parameters:
value (float) – value to set the channel roi to
- Returns:
None
- update_stdev(value: float) None
Updates the distribution stdev to the passed value
- Parameters:
value (float) – value to set the distribution stdev to
- Returns:
None